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Abstract

Tool design in electrochemical machining is investigated including the e�ects of thermal-¯uid properties of the
electrolyte. A two-dimensional two-phase numerical model is used to predict the thermal-¯uid ®eld. Simulation
indicates that, as the curvature of the electrode shape varies widely, the two-dimensional phenomenon of the ¯ow is
apparent and the two-dimensional model should be used during the numerical simulation. In addition, a higher
electrolyte ¯ow rate slightly reduces the two-dimensional e�ects. As the curvature of the electrode shape varies only
slightly, one-dimensional analysis is accurate and capable of reducing the calculation time.

1. Introduction

Conventionally used in diverse industries such as aero-
space, nuclear and automotive, electrochemical machin-
ing (ECM) uses anodic dissolution to machine complex

shapes and di�cult-to-machine materials at high mate-
rial removal rates, with good surface ®nish, without
residual stresses and without damage to the microstruc-
ture of a workpiece [1, 2]. ECM connects the workpiece
(anode) to the tool (cathode) via an electrolytic cell,

List of symbols

CD drag coe�cient
Cl speci®c heat of electrolyte (J kgÿ1 Kÿ1)
db bubble diameter (m)
~E electrical intensity (V mÿ1)
Fr Froude number
fr feed rate of the tool (m sÿ1)
f �x� given tool shape
g electrode gap (m)
ge equilibrium gap thickness at inlet (m)
h�x� workpiece shape
J, ~J current density (A cmÿ2)
Ja Jacobian
Ke electrical conductivity of electrolyte (Xÿ1 mÿ1)
kl thermal conductivity of electrolyte (W mÿ1

Kÿ1)
Mij momentum source associated with a transfer of

mass
n unit normal of a surface
P pressure (Pa)
Pr Prandtl number
q pressure correction
Re Reynolds number
r�x� required workpiece shape
T electrolyte temperature (K)
u, v velocity of electrolyte ¯ow (m sÿ1)
VA velocity of anode dissolution (m sÿ1)

VC velocity of cathode (m sÿ1)
W energy generation rate (Wmÿ2)

Greek symbols
C net mass source rate per unit volume

(kg mÿ3 sÿ1)
a volume fraction
c conductance constant, Equation 7 (Kÿ1)
h angle (see Figure 1)
K current e�ciency
ka electrochemical equivalent (g Cÿ1)
l viscosity coe�cient (kg mÿ1 sÿ1)
q density (kg mÿ3)
/ electric potential (V)
/a applied voltage (V)

Subscripts
0 condition at entrance of electrolyte
a anode
c cathode
e exit condition
l liquid phase
g gas phase

Superscripts
0 dimensionless parameter
k iteration counter
m generalization of heterogeneous conduction

mechanism, Equation 7
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through which, an electrolyte is pumped to carry away
the dissolved metal at the anode surface and the
hydrogen produced at the cathode surface.
The tool design in ECM consists of two methods:

direct and inverse. The direct method refers to the
conventional analysis of anode shape evolution result-
ing from a speci®ed tool shape. Analytic techniques
include the cos h method [3], the analogue method [4]
and the complex variables method [5]. Various numer-
ical techniques, including the ®nite di�erence method
[6, 7] and the ®nite element method (FEM) [8], have also
been applied. However, the above do not consider the
e�ects of many important parameters such as the mode
of electrolyte ¯ow on ECM and change in the electro-
lyte electrical conductivity. Thorpe and Zerkle [9, 10]
proposed a one-dimensional, two-phase ¯uid ¯ow
model, demonstrating that most ECM can be treated
as a quasi-steady process. Jain et al. [11] simulated
ECM processes in which electric and ¯ow ®elds a�ect the
metal removal rate. Hourng solved one-dimensional,
bubbly two-phase [12] and a two-dimensional, one-
phase [13] ¯ow ®eld to accurately predict the workpiece
shape and the variations of electrolyte properties
between electrodes.
A more direct approach to ECM tool design is by

solution of the inverse method in which the admissible
tool shapes are determined directly from the given
workpiece geometry. Among the algorithms proposed in
recent years include the boundary element method [14],
the complex variables method [15], multigrid techniques
[16] and the embedding method [17]. Although these
approaches are highly e�ective for smooth, two-dimen-
sional anode shapes, to our knowledge, no extensions
have been made to explain the e�ect of the thermal-¯uid
properties on electrolyte electrical conductivity. Chang,
Hourng and Chung [18] considered the e�ect of thermal-
¯uid properties with a one-dimensional bubbly-
two-phase ¯ow model to accurately predict the tool
shape for a given workpiece shape. However, the
simulation of the ¯uid ®eld is a one-dimensional model
and inadequate for an electrode with an abrupt shape.
Multi-dimensional analysis is necessary to accurately
model the local distributions of ¯ow and temperature in
which the shapes of cathode and anode are complex.
This study investigates the e�ectiveness of the inverse

method in ECM, particularly with respect to the e�ect
of thermal-¯uid properties. A ®nite Fourier series,
constructed from even and odd harmonics, is used in
the electrode representation to reduce the relative errors.
In addition, the two-dimensional electric potential ®eld
is solved and a two-dimensional two-phase model is
used to simulate the ¯ow ®eld during electrochemical
machining. The variations of velocity, pressure, temper-
ature and volume fraction of the hydrogen gas phase
and the electrolyte liquid phase are demonstrated and
analysed in detail. More thoroughly understanding of
the machining conditions and the numerical parameters
facilitates the design of the tool shape, especially for
abrupt electrode shapes. Simulation indicates that the

workpiece shape machined by the predicted tool corre-
lates well with the required work piece shape.

2. Theoretical model

2.1. Electric ®eld and variation of interelectrode gap

Consider a two-dimensional electrochemical machining
problem as illustrated in Figure 1. In steady state
situations, conservation of charge gives r �~J � 0, where
~J is the electric current density. According to Ohms law,
~J � ÿKer/, where/ is the electric potential and Ke is the
electrolyte electrical conductivity. The governing equa-
tionandboundary conditions for themodel are as follows:

r � �Ker/� � 0 �1�

(i) the anode surfaceAB : / � /a

(ii) the cathode surfaceDC : / � 0
(iii) the flow inletAD : @/

@n � 0

(iv) the flow exit BC : @/
@n � 0

9>>=>>; �2�

where/a is the applied voltage.Boundary conditions 2(iii)
and 2(iv) indicate that no current ¯ows across the inlet/
outlet which should be @/=@n � 0 since n refers to the
normal tool/workpiece surfaces. The electrode gap, g, is
measured perpendicularly to the workpiece and varied as

@g
@t
� VA ÿ VC �3�

where VC is the local cathode feed velocity, and VA is the
dissolution velocity of the anode in the direction normal
to the tool surface. Based on Ohm's law and Faraday's
law, Equation 3 can be written as

@g
@t
� KkaJ

qa

ÿ fr cos h �4�

where ka is the electrochemical equivalent, K the current
e�ciency, qa the anode density, fr the feed rate of the
tool and h the angle between the outer normal of the
workpiece and the feed direction as shown in Figure 1.
The equilibrium gap thickness at inlet, ge, can be
expressed as

ge � KkaKe

qa

/a

fr
�5�

Fig. 1. A typical ECM con®guration.
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The current density normal to the workpiece, J, as
described above is

J � Ke
@/
@n

�6�

where n is the unit normal of the workpiece surface, and
the electrolyte electrical conductivity can be represented
[9] by

Ke � Ke0�1ÿ ag�m�1� c�T ÿ T0�� �7�

where the zero subscript denotes the condition at the
entrance of the electrode gap, c the conductance
constant, and T the electrolyte temperature. In addition,
exponent m is a generalization of heterogeneous con-
duction mechanism and is taken to be 1.75 [9]. For a
one-dimensional model, the void fraction is de®ned as

ag � gg

g
�8�

where gg denotes the dimension occupied by the gas
phase. For the two-dimensional two-phase model ag is
the volume fraction occupied by the gas phase.

2.2. Fluid equations

If the curvature of the electrode shape varies widely, the
electrolyte ¯ow is two-dimensional. Then, the two-
dimensional, two-phase model is required to simulate
the distributions of the thermal-¯uid properties. The
¯ow in the interelectrode gap contains the electrolyte
liquid phase and the hydrogen gas phase. In the current
application, the electrolyte velocity in the interelectrode
gap is not very fast (�0.3 Ma, Mach number) and the
variation of the temperature is slight. For convenience
of analysis, the ¯ow is thus assumed to be quasi-steady,
incompressible and laminar. The equations describing
the conservation of mass and linear momentum of the
ith component are given by Equations 9, 10 and 11.

@

@t
aiqi� � � @

@x
aiqiui� � � @

@y
aiqivi� � � Ci �9�

@

@t
aiqiui� � � @

@x
aiqiuiui� � � @

@y
aiqiuivi� �

� ÿai
@P
@x
� bxi � @

@x
aili

@ui

@x

� �
� @

@y
aili

@ui

@y

� �
� fx uj ÿ ui

ÿ ��Mijx �10�

@

@t
aiqivi� � � @

@x
aiqiviui� � � @

@y
aiqivivi� �

� ÿai
@P
@y
� byi � @

@x
aili

@vi

@x

� �
� @

@y
aili

@vi

@y

� �
� fy vj ÿ vi

ÿ ��Mijy �11�

where i � 1; 2 with j � 3ÿ i, ai is the volume fraction
occupied by component i, qi is the density of this

component in its pure state, vi � �ui; vi� is the velocity
vector, and Ci is the net mass source rate per unit
volume due to the electrochemical reaction. Faraday's
law of the electrolysis can be used to determine the rate
of dissolution of the hydrogen gas near the cathode.
Moreover, P is the common pressure, li is the coe�cient
of viscosity, and b � �bxi; byi� is the gravity term. Since
the x direction is perpendicular to the gravity direction,
bxi is equal to zero, and byi � ai qj ÿ qi

ÿ �
g. f � �fx; fy� is

coe�cient for the inter-phase frictional forces. Where
Mij � �Mijx ;Mijy � is the momentum source associated
with the mass transfer between components i and j.
In addition to the di�erential equations, the follow-

ing algebraic auxiliary relations are needed. Herein, the
¯ow in the interelectrode gap containing only the liquid
electrolyte phase and the hydrogen gas phase is
assumed since the amount of the solid material
absorbed from the workpiece is small. Thus, there is
no net source of mass, and the mass source rates must
satisfy Equation 12.X

i

Ci � 0 �12�

The relationship between the volume fractions can be
expressed asX

i

ai � 1 �13�

The friction-force coe�cients f � �fx; fy� are determined
by

f � 1
2CDql vj ÿ vi

�� ���db �14�

where db is the bubble diameter taken to be 100 lm here
[1]. CD � CDx;CDy

ÿ �
is the drag coe�cient obtained

from appropriate empirical relations. In current appli-
cations, the ¯ow is laminar, and CD is determined by the
following formula [19]:

CD � 6:3

Re0:385b

�15�

and Reb � qljvjÿvijdb
ll

. Note that Reb � Rebx;Reby
ÿ �

,
v � u; v� �, and subscripts l and g denote the liquid
phase and the gas phase, respectively.
Dimensionless parameters are de®ned as follows:

x0 � x=ge; y0 � y=ge; u0
i � ui=u0;

v0i � vi=u0; l0
i � li=ll; q0

i � qi=ql;

t0 � t
ge=u0

; P 0 � P ÿ Pe

qlu
2
0

where the zero superscript denotes the dimensionless
parameter, the zero subscript denotes the condition at
the entrance, and Pe the exit pressure.
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Equations 9, 10 and 11 can be rewritten as

@

@t0
aiq

0
i

ÿ �� @

@x0
aiq

0
i u0

i

ÿ �� @

@y0
aiq

0
i v0i

ÿ � � C0
i �16�

@

@t0
aiq

0
i u0

i

ÿ �� @

@x0
aiq

0
i u0

i u0
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@y0
aiq

0
i u0

i v0i
ÿ �
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Re
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ail
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@y0
� 1

Re
@

@x0
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0
i
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� �
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@y0
ail

0
i
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@y0
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� f 0

y v0j ÿ v0i
� �

� 1

Fr2
aj q0

j ÿ q0
i

� �
�M0

ijy
�18�

where C0
i � Cige=qlu0, Re (the Reynolds number)

� qlu0ge=ll, Fr2 (the Froude number) � u2
0=geg,

f0 � fge=qlu0 and M0
ij �Mijge=qlu

2
0.

Equations 16, 17 and 18 can be rewritten in an
abbreviated form and the superscript 0 can be omitted
for clarity as

@

@t
ai � $ � aivi� � � Ci

qi
�19�

and

@

@t
qiaivi� � � A vi� � � ÿai $ � P� � � li

Re
si � Si �20�

where

A�vi� � @

@x
�aiqiuiui� � @

@y
�aiqiuivi�

� ��
;

@

@x
�aiqiviui� � @

@y
�aiqivivi�

� ��

si � @

@x
aili

@ui

@x

� �
� @

@y
aili

@ui

@y

� �� �
;

�
@

@x
aili

@vi

@x

� �
� @

@y
aili

@vi

@y

� �� ��

Si � bfx uj ÿ ui
ÿ ��Mijx

c ;
�

fy vj ÿ vi
ÿ �� 1

Fr2
aj qj ÿ qi

ÿ ��Mijy

� ��
Since the ¯ow ®eld is assumed to be a quasi-steady

state, the independent derivative t in the above ¯uid
equations is not the actual time but the ®ctitious time of
the iteration step in the numerical scheme.
The incompressible two-phase Navier±Stokes equa-

tions, (Equations 19 and 20) are nonlinear and solved
here as follows [20]. If the velocity ®eld at iteration step
n� 1 is to be determined by the known velocity ®eld at

iteration step n, an intermediate velocity ®eld �aivi�� is
initially obtained from Equation 20 by using the values
at iteration step n, that is,

qi
aivi� ��ÿ aivi� �n

dt
� A vi� �n

� ÿan
i $ � P n� � � li

Re
si � Si �21�

The velocity ®eld at iteration step n� 1, �aivi�n�1, is then
obtained by

qi
�aivi�n�1 ÿ �aivi��

dt
� ÿan

i �$ � q� �22�

where q is a pressure correction. The pressure correction
must ®rst be determined before applying Equation 22.
Taking the divergence of Equation 22 leads to

$ � aivi� �n�1ÿ aivi� ��
h i

� ÿ dt� �$ � an
i

qi
$ � q

� �
�23�

The ®nal velocities at iteration step n� 1 must satisfy
Equation 19, that is,

$ � aivi� �n�1� Ci

qi
ÿ @

@t
ai �24�

Substituting Equation 24 into Equation 23 and then
summing over all phases yields

$ �
X

i

an
i

qi

 !
$ � q� �

" #

� 1

dt
$ �

X
i

aivi� ��
" #

ÿ
X

i

Ci

qi

( )
�25�

The derivative term has vanished owing to

X
i

@

@t
ai� � � @

@t

X
i

ai

 !
� @

@t
1� � � 0

Equation 25, a Poisson like equation, is solved for the
pressure correction q.
The volume fraction can then be obtained from

Equation 24, that is,

an�1
i � an

i � dt
Ci

qi
ÿ $ � aivi� �n�1

� �
�26�

The above iteration is repeated until the convergence
criteria are satis®ed.
The boundary conditions deemed necessary to solve

the ¯ow ®eld are described as follows. The pressure
at exit is given and the pressures along other
boundaries are calculated by the projection method
[21]. Since the governing equations for the velocity
®eld are elliptic, the velocity at the inlet and exit
planes is needed to ensure mathematic exactness.
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Therefore, the velocity distribution of the ¯ow at the
inlet and the exit planes are assumed to be uniform
and fully developed, respectively. The fully developed
boundary condition at the outlet is dictated by the
¯ow if the duct near the outlet is ¯at and extends for
a long distance.

2.3. Thermal ®eld

Since the mass of the hydrogen gas during the ECM
process is very small, for the convenience of thermal
®eld analysis, the unequal velocity equal temperature
(UVET) model is used to simulate the ¯ow in the
interelectrode gap. Furthermore, the energy dissipation
can be neglected since the electrolyte velocity and the
corresponding Eckert number are small. By using the
inlet temperature of the electrolyte as the characteristic
temperature, the dimensionless form of the energy
equation is

�qu�0m
@T 0

@x0
� �qv�0m

@T 0

@y0

� 1

PrRe
@2T 0

@x02
� @

2T 0

@y02

� �
� W 0 �27�

where �qu�0m and �qv�0m are the dimensionless ¯ow rates
of the two-phase mixture in x- and y-directions, respec-
tively, and determined by

�qu�0m �
agqgug � alqlul

qlu0
�28�

and

�qv�0m �
agqgvg � alqlvl

qlu0
�29�

and Pr (Prandtl number) � llCl=kl and W 0 � Wge=
�qlClT0u0�, where W, the energy generation rate origi-
nating from the current, can be obtained by the Joule
law as

W � ~E �~J � Ke
@/
@x

� �2

� @/
@y

� �2
" #

�30�

where ~E is the electrical intensity. The substance
properties, such as thermal conductivity kl and
speci®c heat capacity Cl, are assumed to remain
constant and taken as that of the electrolyte for
convenience.
In solving the energy equation, the temperature at

inlet, workpiece, and tool are speci®ed, while the exit
temperature is assumed to be fully developed.

2.4. Direct method analysis

The direct problem consists of identifying the workpiece
position for a prescribed tool shape. Furthermore, the

variation in e�ective electrolyte conductivity a�ects the
workpiece shape, which is attributed to variations in
both the volume fraction of hydrogen gas and the
temperature of the electrolyte. The direct method
analysis procedure is as follows.

2.4.1. Mesh generation
In ECM, the workpiece shape is irregular and changes
continuously during the machining process. A good
distribution of model points is necessary for calculating
the electric potential gradient and the ¯uid ®eld. A
body-®tted coordinate transformation technique, where
a Poisson equation is used to transform an irregular
physical domain (xÿ y) to a rectangular computational
domain (nÿ g) [22], is applied herein and generates a
smooth grid distribution. A typical mesh is indicated in
Figure 2.

2.4.2. Electric potential
In this study, the electric potential ®eld is solved by ®nite
element method (FEM) to reduce the CPU time. The
Galerkin residual equation for the governing equation
of the electric ®eld can be derived from Equation 1 asZZ

@

@x
Ke
@/
@x

� �
� @

@y
Ke
@/
@y

� �� �
u�x; y�dx dy � 0;

i � 1; 2; . . . ; 8 �31�

where u�x; y� is the shape function or trial function [23].
The element type applied in the present simulation is a
2D, 8-nodal quadratic isoparametric quadrilateral ele-
ment. The corresponding shape function is

u�x; y� � a1 � a2x� a3y � a4x2 � a5xy � a6y2

� a7x2y � a8xy2 �32�

By integrating Equation 31 by parts once, we can solve
it, with boundary conditions of Equation 2, numerically
for the electric potential distribution in the interelec-
trode gap.

Fig. 2. A typical mesh used.
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2.4.3. Velocity/temperature/conductivity ®elds
In calculating the two-dimensional two-phase thermal-
¯uid properties, a ®nite di�erence method is used to
solve the partial di�erential equations.
The ¯ow ®eld is determined by the governing equa-

tions mentioned in Section 2.2. First, Equation 21 is
employed to calculate the intermediate velocity ®eld
aivi� �� with the corresponding initial parameters. Equa-
tion 25 is then used to determine the pressure correction
q and Equation 23 is used to calculate aivi� �n�1.
Furthermore, Equation 26 is used to calculate the
volume fraction. The above procedure is repeated until
the variation of the pressure correction q at each single
node is less than 10ÿ5. Here the time represents the
®ctitious time of the iteration step in the numerical
scheme.
The temperature ®eld is determined by Equation 33.

The convergence criteria refer to a situation in which the
variation of the temperature at each single point is less
than 10ÿ4.
Afterward, the electric conductivity can be calculated

as the gas volume fraction and the temperature values
when incorporated into Equation 7.

2.4.4. Workpiece shape
The workpiece shape can be obtained by Equation 4.
The new positions (xp; yp) after Dt machining time are as
follows:

xP � x0 � KkaJ
qa

ÿ fr cos h

� �
� Dt � sin h �34�

yP � y0 � fr cos hÿ KkaJ
qa

� �
� Dt � cos h �35�

where (x0; y0) represent the positions of the workpiece in
the previous time step.
Steps 2.4.1 to 2.4.4 are repeated until the interelec-

trode gap reaches equilibrium. Namely, the relative
variation at each single node in the consecutive time step
is less than 10ÿ4.

2.5. Inverse method analysis

In the direct method, even if the in¯uence of the
thermal-¯uid properties on ECM is considered, the
workpiece shape for a given tool shape can be numer-
ically predicted in an e�cient manner. Therefore, the
embedding method [17], which searches among the set of
direct solutions for various tools until the required
workpiece shape is found matched, is applied herein.
Assume that a1; a2; . . . ; am are the coe�cients of a

Fourier cosine series of degree m associated with any
given tool shape. Where f �x� and b1; b2; . . . ; bm are those
associated with the workpiece shape h�x� resulting from
f �x� by the direct method. Finally, c1; c2; . . . ; cm are the
coe�cients of a Fourier cosine series of degree m
associated with the required workpiece shape r�x�.

If �A� is equivalent to �a1; a2; . . . ; am�T with similar
expressions applicable to �B� and �C�, then the numerical
iteration can be written as [17]

�A�k�1 � �A�k � �DA�k �36�

and

�DA�k � �C� ÿ �B�k
� �

� �Ja�ÿ1 �37�

where k is the iteration counter, Ja is the Jacobian, and
its �i; j� th element is represented by

@bi

@aj
' 1

e
bi ak

1; . . . ; ak
j � e; . . . ; ak

m

� �h
ÿbi ak

1; . . . ; ak
j ; . . . ; ak

m

� �i
; j � 1; 2; . . . ;m:

�38�

where e � 10ÿ3 is used herein. For each coe�cient bi, the
direct method must be applied �m� 1� times for
obtaining bi�ak

1; . . . ; ak
j ; . . . ; ak

m� and each bi�ak
1; . . . ; ak

j�
e; . . . ; ak

m�. Hence, the procedure could be extremely
costly for a large m, and a proper value of m should
be chosen.
The coe�cients of the workpiece shape function can

be obtained by the curve ®tting method. Herein, h�x� is
approximated by the Fourier cosine series as

h�x� �
Xm

i�0
biui�x� �39�

where ui�x� are constructed by both even and odd
harmonics to increase the accuracy, that is,

ui�x� � cos�ipx=L� �40�

where L is the length of the electrode in x-direction.
The coe�cients of h�x� are determined by the least-

square method, in which the square di�erence between
the required workpiece shape r�x� is

ERR�h� �
Xn

k�1
h�xk� ÿ r�xk�� �2 �41�

Since ERR�h� is a function of bi, the coe�cients bi can be
solved by

0 � @ERR�h�
@bi

�
Xn

k�1
2 h�xk� ÿ r�xk�� � � @

@bi
h�xk� ÿ r�xk�� � �42�

or

Xm

i�0
bi

Xn

k�1
ui�xk�uj�xk�

" #
�
Xn

k�1
r�xk� � uj�xk�
� � �43�
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3. Numerical procedure

All numerical calculations are performed on a personal
computer with an INTEL Pentium III 450 MHz pro-
cessor. Notably, the normal CPU time for a direct
method with a grid size of 201� 15 is about 3660 s. The
numerical procedure is as follows:
(i) Give the required workpiece shape and the ma-

chining conditions.
(ii) Apply the direct method to calculate the new shape

of the workpiece until the interelectrode gap
reaches equilibrium.

(iii) Calculate the coe�cients of the workpiece shape by
the curve ®tting method.

(iv) Employ the embedding method to correct the tool
shape, and repeat step (ii) to (iii) until the corrected
term �DA� is less than 10ÿ4.

The tool shape obtained in step (iv) is evaluated by the
relative error de®ned as

RERR � AERR=ge � 1

n

Xn

k�1
�Dyk�2

" #�
ge �44�

where Dyk is equal to r�xk� ÿ yk at each node k, and r�xk�
is the required workpiece shape as stated above, while yk

is the workpiece shape if machined by the calculated tool
shape.

4. Results and discussion

Tables 1 and 2 list the machining conditions and the
electrolyte properties used herein, respectively. Accord-
ing to Figure 3, the numerical predictions by various
models are in good qualitative agreement with the
experimental data [24]. In particular, the result obtained
from the two-dimensional two-phase model is closer to
the experimental data than other results obtained by
using the one-dimensional two-phase model. In the one-
dimensional model, the volume fraction of the hydrogen
gas, the most important thermal-¯uid parameter for
ECM [18], is almost linearly distributed from electrolyte
entrance to exit. Therefore, the interelectrode gap
thickness decreases linearly from electrolyte entrance
to exit. However, in a two-dimensional two-phase
model, the detailed distribution of the volume fraction

of the hydrogen gas phase can be obtained so that the
result is closer to the experimental data. Thus, the two-
dimensional two-phase model is used to simulate the
thermal-¯uid properties properly, thus yielding an
accurate prediction in electrochemical machining.
Consider a desired workpiece shape represented by

r�x� � 2� 2:0 cos�px=5� with a feature that the shape is
symmetric against the center axis through x � 5. The
tool shape designed only by Fourier even harmonics [18]
is also symmetric as shown in Figure 4. However, the
workpiece machined by this tool shape is not symmetric.
The fact that the ¯uid and thermal properties are not
symmetric in the inlet and exit regions accounts for the
metal removal rate is not being the same in these
regions. Therefore, the use of only even harmonics for
the electrode representation [18] leads to a large relative
error and is no longer valid in the two-dimensional
investigation. Conversely, the relative error for the case
with even and odd harmonics is relatively small as listed
in Table 3. Furthermore, the calculation time of the
latter case does not increase owing to use of the same
terms of m � 5.
Figure 5 illustrates that, as the desired workpiece is

steep, the e�ect of the thermal-¯uid is large. Thus, the
predicted tool shapes behind the center using the two-
dimensional model and the one-dimensional model [18]
di�er statistically from each other. This di�erence is
owing to the fact that the varying curvature of the
electrodes a�ects the electrolyte ¯ow. The hydrogen gas

Table 1. Working conditions of electrochemical machining

Fig. no. 2 3, 4 11 12

Tool feed rate 10)6, fr=m sÿ1 9.27 9.05 9.05 9.05

Applied voltage, /a=V 19.5 18.5 18.5 18.5

Temperature at entrance, T0=K 297.5 297.5 297.5 297.5

Electrolyte ¯ow ¯ux 10)6, Q=m2 sÿ1 1750 1750 3500 1750

Electrochemical equivalent 10)5, ka=g Cÿ1 9.3161

Metal density, qa=kg mÿ3 2698

Current e�ciency, K=% 92.5

Table 2. Physical properties of the electrolyte (NaCl�H2O) and the

hydrogen gas

Electrolyte conductivity, Ke0=X
ÿ1 mÿ1 7

Electrolyte liquid density, ql=kg mÿ3 1027

Hydrogen gas density 10)3, qg=kg mÿ3 81.85

Speci®c heat capacity 103, Cl=J kg
ÿ1 Kÿ1 4.18

Thermal constant, c=Kÿ1 0.016

Electrolyte liquid viscosity coe�cient 10)3, ll=kg mÿ1 sÿ1 0.781

Hydrogen gas viscosity coe�cient 10)6, lg=kg mÿ1 sÿ1 8.963

Thermal conductivity, kl=Wmÿ1 Kÿ1 0.63

Fig. 3. Comparisons of workpiece shape between numerical and

experimental results. (s) Experimental data [23]; (- - - - -) J. Hopenfeld

and R.R. Cole; (- � - � - � -) one-dimensional two-phase model [18];

(Ð±) two-dimensional two-phase model.
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phase near the cathode is then concentrated downstream
of the centre and is not e�ectively carried out by the
electrolyte, as shown in Figure 6.
Figures 7 and 8 display the ¯ow ®elds of the electro-

lyte liquid phase and the hydrogen gas phase, respec-

tively. In Figure 7, the ¯ow rate av of the electrolyte
downstream of the centre is obviously small in the
region near the cathode behind the center. However, the
¯ow rate of the hydrogen produced by the electrochem-
ical reaction increases along the ¯ow direction and
accumulates near the cathode, as shown in Figure 8.
The pressure distribution of the ¯uids (Figure 9) can

be used to further elucidate the concentrating phenom-
enon. Since the ¯ow ®eld is signi®cantly changed, a low-
pressure region is formed in the centre of the interelec-
trode cell. The pressure then increases along the ¯ow
direction and decreases slightly at the exit. This pressure
distribution causes the hydrogen gas to be trapped in
this low-pressure region.
Figure 10 shows the temperature distribution. The

temperature of the ¯uids increases along the ¯ow
direction due to the e�ect of the Joule law. Nevertheless,
the temperature of the ¯uids near the cathode behind the
centre is lower due to the gas concentration. The heat
transfer capability of the gas phase is inferior to that of
the liquid phase. The temperature near the workpiece is
also higher for the above reason.

Fig. 4. Predicted tool shapes and corresponding workpiece shapes for

di�erent curve ®tting functions. Desired workpiece shape is

r�x� � 2:0� 2:0 cos�px=5�. (- - - - -) Tool shape using ui�X� � cos

�2ipX=L� [18] (tool 1); (- � - � - �) tool shape using ui�x� � cos�ipx=L�
(tool 2); (ÿÿÿ�) workpiece shape obtained from tool 1;(ÿ � � ÿ �)
workpiece shape obtained from tool 2; (Ð±) desired workpiece shape.

Table 3. Relative errors of the workpiece for various machining

conditions

Figure Numerical model m Relative error/(%)

4 ui�x� � cos�2ipx=L� 5 0.6000

4 ui�x� � cos�ipx=L� 5 0.4041

5 One-dimensional 5 0.4041

5 Two-dimensional 5 0.2969

12 One-dimensional 5 0.4041

12 Two-dimensional 5 0.3580

13 One-dimensional 5 0.1868

13 Two-dimensional 5 0.2249

Fig. 5. Predicted tool shapes and corresponding workpiece shapes for

di�erent thermal-¯uid models. The desired workpiece shape is

r�x� � 2:0� 2:0 cos�px=5� and the ¯ow rate of the inlet electrolyte is

1750 mm sÿ1. (- - - - -) Tool shape using one-dimensional model [18]

(tool 1); (- � - � - �) tool shape using two-dimensional model (tool 2);

(ÿÿÿ�) workpiece shape obtained from tool 1; (ÿ � � ÿ �) workpiece
shape obtained from tool 2; (Ð±) desired workpiece shape.

Fig. 6. Volume fraction distribution of hydrogen gas in equilibrium.

Fig. 7. Electrolyte velocity distribution in equilibrium (!) Unit

vector: 3000 mm sÿ1.

152



Figure 11 plots the variations of average temperature,
void fraction and electrical conductivity in the section
perpendicular to the ¯ow direction against the ¯ow

distance. As mentioned in Equation 7, the electrical
conductivity decreases when either reducing the temper-
ature or increasing the void fraction. Since the void
fraction dominates in this case, the electrical conductiv-
ity varies with it. Thus, the predicted tool shapes by the
one-dimensional model [18] and the two-dimensional
model di�er from each other. If the curvature of the
electrode shape varies markedly, the ¯ow is two-dimen-
sional and the two-dimensional model should be used in
the simulation. In this case, a one-dimensional model
cannot obtain the detail of the gas phase distribution.
If the ¯ow rate of the inlet electrolyte is increased, the

two-dimensional nature of the ¯ow is reduced but only
slightly. According to Figure 12, the ¯ow rate at the inlet
is 3500 m2 sÿ1 , in which the predicted tool shapes using
one-dimensional [18] and two-dimensional models still
di�er from each other. However, the di�erence is smaller
than that in the case of 1750 m2 sÿ1 as shown in Figure 5.
According to Figure 13, the desired workpiece shape

is changed to r�x� � 2� 1:5 cos�px=5�. Therefore, the

Fig. 8. Hydrogen velocity distribution in equilibrium (!) Unit vector:

3000 mm sÿ1.

Fig. 9. Pressure distribution in equilibrium.

Fig. 10. Temperature distribution in equilibrium.

Fig. 11. Variation of void fraction, temperature and electrical conductivity along the stream path for di�erent thermal-¯uid models. Void

fraction: (- � -n- � -) one-dimensional model [18]; (- � - � -) two-dimensional model. Temperature: (- -n- -) one-dimensional model [18]; (- - - -)

two-dimensional model. Electrical conductivity: (±n±) one-dimensional model [18]; (Ð±) two-dimensional model.
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curvature of the electrode shape varies only slightly. The
two-dimensional nature of the ¯ow is insigni®cant,
accounting for the fact that the results of the one-
dimensional model [18] and the two-dimensional resem-
ble each other.

5. Conclusions

This work employs a numerical method with two-
dimensional two-phase thermal-¯uid analysis to predict
a tool shape for a required workpiece shape in electro-

chemical machining. Simulation indicates that the
approximation of symmetry, that is only using even
harmonics, is no longer valid in a two-dimensional
investigation.
The e�ect of the two-dimensional thermal-¯uid prop-

erties should be considered in the inverse method. If the
curvature of the electrode shape varies widely, the two-
dimensional phenomenon of the ¯ow is apparent, and
the two-dimensional model should be used in the
simulation.
Although electrolyte with large ¯ow rate can slightly

reduce the e�ect of the thermal-¯uid properties, the two-
dimensional phenomenon still persists as the electrode
shape is steep.
As the curvature of the electrode shape varies slightly,

we recommend the use of one-dimensional analysis
which uses less computational time and leads to accurate
thermal-¯uid properties.
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Fig. 12. Predicted tool shapes and corresponding workpiece shapes for

di�erent thermal-¯uid models. Desired workpiece shape is

r�x� � 2:0� 2:0 cos�px=5� and the ¯ow rate of the inlet electrolyte is

3500 mm sÿ1. (- - - - -) Tool shape using one-dimensional model [18]

(tool 1); (- � - � - �) tool shape using two-dimensional model (tool 2);

(ÿÿÿ �) workpiece shape obtained from tool 1; (ÿ � � ÿ � �) workpiece
shape obtained from tool 2; (Ð±) desired workpiece shape.

Fig. 13. Predicted tool shapes and corresponding workpiece shapes for

di�erent thermal-¯uid models. Desired workpiece shape is

r�x� � 2:0� 1:5 cos�px=5� and the ¯ow rate of the inlet electrolyte is

1500 mm sÿ1. (- - - - -) Tool shape using one-dimensional model [18]

(tool 1); (- � - � - � ) tool shape using two-dimensional model (tool 2);

(- - - �) workpiece shape obtained from tool 1; (ÿ � � ÿ � �) workpiece

shape obtained from tool 2; (Ð±) desired workpiece shape.
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